【正誤表】

書 名:MATLABによる制御工学

版 数:第1版13刷

ページ	箇所	誤	正
24	図3.2	$u(n\Delta t)$ $u(n\Delta t)$ $u(n\Delta t)$ $u(n\Delta t)$ $n\Delta t (n+1)\Delta t$ (a) (b)	$u(n\Delta t)$ $u(n\Delta t)$ $u(n\Delta t)$ $u(n\Delta t)$ $u(n\Delta t)$ $n\Delta t \ (n+1)\Delta t \ t$ (a) (b)
44	下3行目	√2 のような	πのような
54	式(4.67)	$\theta(s) = \dots + \frac{L_a s + R_a}{s \{R_a J s + (R_a D + K_T K_e)\}} T_d(s)$	$\theta(s) = \dots + \frac{R_a}{s\{R_aJs + (R_aD + K_TK_e)\}} T_d(s)$
59	図5.1 図内文字	$-\Psi(\omega_0)$	$-\frac{\Psi(\omega_0)}{\omega_0}$
183	下8行目	$e(s) = -\frac{2s(s+1)}{s^3 + 3s^2 + 3s + 1} = -\frac{2s}{(s+1)^2}$	$e(s) = -\frac{2}{(s+1)^3}$
	下5行目	$\lim_{s \to 0} se(s) = \lim_{s \to 0} \left -\frac{2s^2}{(s+1)^2} \right = 0$	$\lim_{s \to 0} se(s) = \lim_{s \to 0} \left -\frac{2s}{(s+1)^3} \right = 0$

2023年7月現在